# Densities of Octamethylcyclotetrasiloxane + Methane and 2,2-Dimethylpropane + Methane from 10 to 200 MPa and from 294 to 433 K

# Stefan J. Wappmann, Igor N. Tarassov, and Hans-Dietrich Lüdemann\*

Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany

Densities for octamethylcyclotetrasiloxane + methane and 2,2-dimethylpropane + methane have been determined in the one-phase region at temperatures between 294 and 433 K for a maximum pressure of 200 MPa in a piston cylinder apparatus. Polynomials capable of describing the density as a function of P, T, and composition have been derived.

## Introduction

Our group has studied the pressure dependence of the self-diffusion coefficient D of binary mixtures consisting of nonpolar molecules of approximately spherical shape and very different masses and diameters, octamethylcyclotetrasiloxane + methane and 2,2-dimethylpropane + methane, by the pulsed field gradient technique. For the interpretation of these data by the usual modifications of the hard sphere models (Chandler, 1975; Speedy et al., 1989) and a comparison of the experimental diffusion coefficients D with the results obtained by molecular dynamics simulations for mixtures of hard spheres, reliable density data are necessary. Since the published density data for these two mixtures are very fragmentary, it was decided to measure all densities in the one-phase region of these mixtures in a simple cylinder piston type PVT cell (Francesconi et al., 1975; Wappmann et al., 1995). A preliminary account of part of the data has been given previously (Wappmann, 1993).

## **Experimental Section**

**Substances.** Methane (99.75%) (Linde, Unterschleissheim, FRG) was taken directly from a steel bottle. It was dried by passing it through a steel column filled with silica gel and then condensed into a titanium autoclave described previously (Has and Lüdemann, 1990) and cooled to liquid nitrogen temperatures. Residual air was removed by several freeze−pump−thaw cycles. A final pressure of 10 Pa was reached in the pump cycles. Due to the high vapor pressure of methane at liquid nitrogen temperatures (78 K), a certain amount of the gas was lost in this process. Octamethylcyclotetrasiloxane (OMCTS) (≥99%) (Fluka, Buchs, Switzerland) and 2,2-dimethylpropane (DMP) (≥99%) (Linde, Unterschleissheim, FRG) were dried over molecular sieves (3 Å) and degassed by freeze−pump−thaw cycles to a final pressure of 10<sup>−3</sup> Pa.

**Apparatus.** The densimeter, a modification of the piston cylinder design used by Francesconi et al. (1975), and its calibration have been described in detail recently (Wappmann et al., 1995).

**Filling Procedures.** The liquid component was filled into the evacuated densimeter with a syringe. The mass of the sample filled into the volume was determined by weighing the syringe before and after the filling with a precision of  $\pm 0.001$  g. A defined amount of the methane was added to the liquid in the densimeter from a small stainless steel cylinder (volume 50 cm<sup>3</sup>, maximum pressure

| Fable 1. | Density o of | <b>Octamethylc</b> | vclotetrasiloxane |
|----------|--------------|--------------------|-------------------|
|          |              |                    |                   |

|               |         | $ ho/({ m kg}{ m \cdot}{ m m}^{-3})$ |         |         |         |  |  |  |  |  |  |
|---------------|---------|--------------------------------------|---------|---------|---------|--|--|--|--|--|--|
| <i>P</i> /MPa | 308.2 K | 337.7 K                              | 367.9 K | 394.9 K | 426.6 K |  |  |  |  |  |  |
| 10            | 948     | 917                                  | 885     | 858     | 824     |  |  |  |  |  |  |
| 20            | 961     | 932                                  | 903     | 878     | 848     |  |  |  |  |  |  |
| 30            | 973     | 945                                  | 918     | 895     | 868     |  |  |  |  |  |  |
| 40            |         | 957                                  | 931     | 909     | 884     |  |  |  |  |  |  |
| 50            |         | 968                                  | 944     |         |         |  |  |  |  |  |  |
| 60            |         |                                      | 954     | 934     | 912     |  |  |  |  |  |  |
| 80            |         |                                      | 973     | 955     | 934     |  |  |  |  |  |  |
| 100           |         |                                      | 991     | 973     | 953     |  |  |  |  |  |  |
| 120           |         |                                      |         | 989     | 970     |  |  |  |  |  |  |
| 140           |         |                                      |         | 1003    | 985     |  |  |  |  |  |  |
| 160           |         |                                      |         |         | 999     |  |  |  |  |  |  |
| 180           |         |                                      |         |         | 1011    |  |  |  |  |  |  |

Table 2. Density  $\rho$  of Octamethylcyclotetrasiloxane (1) + Methane (2) ( $x_1 = 0.772$ )

|       | ρ/(kg·m <sup>-3</sup> ) |         |         |         |         |         |         |  |  |
|-------|-------------------------|---------|---------|---------|---------|---------|---------|--|--|
| P/MPa | 313.2 K                 | 333.2 K | 353.2 K | 373.2 K | 393.2 K | 413.2 K | 433.2 K |  |  |
| 30    | 935                     | 915     | 896     | 878     | 859     | 841     | 824     |  |  |
| 40    | 946                     | 928     | 910     | 892     | 875     | 859     | 842     |  |  |
| 50    | 956                     | 939     | 922     | 905     | 889     | 874     | 858     |  |  |
| 60    | 966                     | 950     | 933     | 917     | 902     | 887     | 872     |  |  |
| 80    |                         | 968     | 952     | 938     | 924     | 910     | 896     |  |  |
| 100   |                         | 984     | 970     | 956     | 943     | 929     | 917     |  |  |
| 120   |                         |         | 985     | 972     | 959     | 947     | 935     |  |  |
| 140   |                         |         | 998     | 986     | 974     | 962     | 951     |  |  |
| 160   |                         |         |         | 999     | 987     | 976     | 965     |  |  |
| 180   |                         |         |         | 1012    | 1000    | 989     | 978     |  |  |
| 200   |                         |         |         |         | 1012    | 1001    | 991     |  |  |
|       |                         |         |         |         |         |         |         |  |  |

Table 3. Density  $\rho$  of Octamethylcyclotetrasiloxane (1) + Methane (2) ( $x_1 = 0.531$ )

|       | $ ho/(kg\cdot m^{-3})$ |         |         |         |         |         |         |  |  |  |
|-------|------------------------|---------|---------|---------|---------|---------|---------|--|--|--|
| P/MPa | 313.2 K                | 333.2 K | 353.2 K | 373.2 K | 393.2 K | 413.2 K | 433.2 K |  |  |  |
| 30    | 880                    | 859     | 838     | 819     | 799     | 780     | 760     |  |  |  |
| 40    | 893                    | 874     | 855     | 837     | 818     | 800     | 783     |  |  |  |
| 50    | 905                    | 886     | 869     | 851     | 834     | 818     | 802     |  |  |  |
| 60    | 916                    | 898     | 881     | 865     | 849     | 833     | 818     |  |  |  |
| 80    | 935                    | 918     | 903     | 888     | 873     | 858     | 845     |  |  |  |
| 100   | 951                    | 936     | 921     | 907     | 893     | 880     | 867     |  |  |  |
| 120   |                        | 951     | 937     | 924     | 910     | 898     | 886     |  |  |  |
| 140   |                        | 965     | 952     | 939     | 926     | 915     | 903     |  |  |  |
| 160   |                        |         | 965     | 953     | 941     | 929     | 918     |  |  |  |
| 180   |                        |         | 978     | 966     | 954     | 943     | 932     |  |  |  |
| 200   |                        |         |         | 977     | 966     | 955     | 945     |  |  |  |
|       |                        |         |         |         |         |         |         |  |  |  |

20 MPa). The mass of the methane and DMP was determined to  $\pm 0.001$  g from the mass of the cylinder before and after the filling. The mass of a typical filling was around 30 g of the mixture.

© 1996 American Chemical Society



**Figure 1.** Experimental densities  $\rho$  of the OMCTS (1) + methane (2) mixture ( $x_1 = 0.374$ ): ( $\triangle$ ) 313.2 K, ( $\bullet$ ) 333.2 K, ( $\blacksquare$ ) 353.2 K, ( $\Box$ ) 373.2 K, ( $\bigcirc$ ) 393.2 K, ( $\blacktriangle$ ) 413.2 K, (tdo) 433.2 K. The lines drawn through the experimental points result from fitting the data to eqs 1–3.



**Figure 2.** Experimental densities  $\rho$  of the OMCTS (1) + methane (2) mixture ( $x_1 = 0.772$ ): ( $\triangle$ ) 313.2 K, ( $\bigcirc$ ) 333.2 K, ( $\blacksquare$ ) 353.2 K, ( $\Box$ ) 373.2 K, ( $\bigcirc$ ) 393.2 K, ( $\blacktriangle$ ) 413.2 K, ( $\bigtriangledown$ ) 433.2 K. The lines drawn through the experimental points result from fitting the data to eqs 1–3.

The temperature was determined in the densimeter with a calibrated metal-sheathed chromel-alumel thermocouple to  $\pm 0.2$  K. The maximum uncertainty of *T* over the whole sample volume was  $\pm 0.3$  K. Pressures are accurate to  $\pm 0.2$  MPa in the range up to 100 MPa and to  $\pm 1$  MPa above that range.

**Accuracy.** In the elaborate calibration described previously (Wappmann et al., 1995) the published densities of methanol (Goodwin 1987) could be reproduced to  $\pm 0.2\%$ .



**Figure 3.** Experimental densities  $\rho$  of the DMP (1) + methane (2) mixture ( $x_1 = 0.485$ ): ( $\blacklozenge$ ) 295 K, ( $\blacksquare$ ) 313.6 K, ( $\blacklozenge$ ) 334 K, ( $\blacktriangle$ ) 373.6 K, ( $\blacktriangledown$ ) 414.2 K. The lines drawn through the experimental points result from fitting the data to eqs 1–3.



**Figure 4.** Experimental densities  $\rho$  plotted against the mole fraction *x* for the mixture *x* OMCTS + (1 - x) CH<sub>4</sub> at 100 MPa: ( $\blacklozenge$ ) 313.2 K, ( $\blacktriangle$ ) 353.2 K, ( $\blacklozenge$ ) 393.2 K, ( $\blacksquare$ ) 413.2 K. The lines drawn through the experimental points result from fitting the data to eqs 1–3.

The mole fractions x of the mixtures are accurate to  $\pm 0.003$ . The overall error of the results given here, which includes the uncertainty of pressure, temperature, volume, and mass determination, is estimated to  $\pm 0.4\%$  for the pure OMCTS and DMP and to  $\pm 0.6\%$  for all mixtures studied.

## **Results and Discussion**

All experimental densities are given in the Tables 1-7. These experimental densities were fitted to the modified

Table 4. Density  $\rho$  of Octamethylcyclotetrasiloxane (1) + Methane (2) ( $x_1 = 0.374$ )

|               | $ ho/({f kg}{f \cdot}{f m}^{-3})$ |         |         |         |         |         |         |  |  |  |
|---------------|-----------------------------------|---------|---------|---------|---------|---------|---------|--|--|--|
| <i>P</i> /MPa | 313.2 K                           | 333.2 K | 353.2 K | 373.2 K | 393.2 K | 413.2 K | 433.2 K |  |  |  |
| 30            | 812                               | 790     | 768     | 745     | 724     | 702     | 680     |  |  |  |
| 40            | 828                               | 807     | 787     | 767     | 748     | 729     | 710     |  |  |  |
| 50            | 841                               | 822     | 803     | 785     | 767     | 749     | 732     |  |  |  |
| 60            | 853                               | 835     | 817     | 800     | 783     | 767     | 751     |  |  |  |
| 80            | 874                               | 857     | 841     | 825     | 810     | 796     | 781     |  |  |  |
| 100           | 891                               | 876     | 861     | 846     | 832     | 819     | 806     |  |  |  |
| 120           | 906                               | 892     | 878     | 864     | 851     | 838     | 826     |  |  |  |
| 140           | 920                               | 906     | 893     | 880     | 868     | 856     | 844     |  |  |  |
| 160           |                                   | 920     | 907     | 895     | 882     | 871     | 860     |  |  |  |
| 180           |                                   | 932     | 920     | 908     | 896     | 885     | 874     |  |  |  |
| 200           |                                   |         | 932     | 920     | 909     | 898     | 888     |  |  |  |

Table 5. Density  $\rho$  of Octamethylcyclotetrasiloxane (1) + Methane (2) ( $x_1 = 0.177$ )

|       |         |         | 1       | o∕(kg•m <sup>−3</sup> | )       |         |         |
|-------|---------|---------|---------|-----------------------|---------|---------|---------|
| P/MPa | 313.2 K | 333.2 K | 353.2 K | 373.2 K               | 393.2 K | 413.2 K | 433.2 K |
| 30    | 635     | 608     | 581     | 554                   | 527     | 501     | 476     |
| 40    | 662     | 638     | 614     | 592                   | 570     | 548     | 527     |
| 50    | 681     | 660     | 639     | 618                   | 599     | 580     | 561     |
| 60    | 697     | 678     | 658     | 642                   | 622     | 605     | 588     |
| 80    | 723     | 706     | 689     | 673                   | 657     | 642     | 627     |
| 100   | 745     | 728     | 713     | 699                   | 684     | 671     | 657     |
| 120   | 763     | 748     | 733     | 720                   | 706     | 694     | 682     |
| 140   | 779     | 764     | 751     | 738                   | 725     | 714     | 702     |
| 160   | 793     | 779     | 766     | 754                   | 742     | 731     | 720     |
| 180   | 806     | 793     | 780     | 769                   | 757     | 747     | 736     |
| 200   | 818     | 805     | 793     | 782                   | 771     | 761     | 751     |

Tait equation (1). The pressure, temperature, and concentration dependence of the parameters *A* and *B* of eq 1 was derived from a fit of all density data to the polynomials given by eq 2. For each experimental isotherm (Tables 1–7) a density,  $\rho_0(P_0)$ , was chosen as the reference point for the

Table 6. Density  $\rho$  of 2,2-Dimethylpropane (1) + Methane (2)



**Figure 5.** Experimental densities  $\rho$  plotted against the mole fraction *x* for the mixture *x* DMP + (1 - x) CH<sub>4</sub> at 150 MPa: ( $\blacklozenge$ ) 295 K, ( $\blacktriangle$ ) 334 K, ( $\blacksquare$ ) 373.6 K, ( $\blacklozenge$ ) 414.2 K. The lines drawn through the experimental points result from fitting the data to eqs 1–3.

modified Tait equation [ $\rho_0(50 \text{ Mpa})$  for neat OMCTS and for all OMCTS + CH<sub>4</sub> mixtures and  $\rho_0(100 \text{ Mpa})$  for neat DMP, CH<sub>4</sub>, and all DMP + CH<sub>4</sub> mixtures]. In order to be able to interpolate these data for mixtures of all composi-

|       | $ ho/({ m kg}{ m \cdot}{ m m}^{-3})$ |         |         |         |         |         |         |               |         |         |
|-------|--------------------------------------|---------|---------|---------|---------|---------|---------|---------------|---------|---------|
|       | $x_1 = 0.485$                        |         |         |         |         |         |         | $x_1 = 0.243$ |         |         |
| P/MPa | 294.0 K                              | 313.6 K | 334.0 K | 373.6 K | 414.2 K | 295.0 K | 313.6 K | 334.0 K       | 373.6 K | 414.2 K |
| 25    |                                      | 480.6   | 455.4   | 410.6   | 362.4   | 386.2   | 362.0   | 336.0         | 288.0   | 250.3   |
| 50    | 539.8                                | 521.7   | 504.8   | 473.0   | 441.8   | 440.9   | 423.7   | 406.0         | 372.8   | 341.3   |
| 75    | 564.4                                | 549.0   | 535.1   | 508.8   | 482.5   | 472.7   | 458.5   | 443.8         | 416.5   | 390.5   |
| 100   | 583.3                                | 570.2   | 557.8   | 534.1   | 511.8   | 495.0   | 482.6   | 469.6         | 445.7   | 423.1   |
| 125   | 599.5                                | 587.4   | 575.8   | 554.5   | 533.6   | 513.2   | 502.0   | 490.1         | 468.5   | 447.8   |
| 150   | 613.8                                | 602.1   | 591.3   | 571.4   | 552.1   | 528.9   | 518.2   | 507.3         | 487.1   | 467.6   |
| 175   | 625.8                                | 614.9   | 604.9   | 585.8   | 567.6   | 542.2   | 532.5   | 521.9         | 503.0   | 485.1   |
| 200   | 637.2                                | 626.6   | 617.2   | 598.9   | 581.8   | 554.2   | 544.8   | 535.0         | 516.8   | 499.7   |

**Table 7. Density**  $\rho$  **of 2,2-Dimethylpropane (1)** + **Methane (2)** 

| $ ho/({ m kg}\cdot{ m m}^{-3})$ ( $x_1 = 1.00$ ) |         |         |         |         |               | $ ho/({ m kg}\cdot{ m m}^{-3})~(x_1=0.794)$ |         |         |         |         |
|--------------------------------------------------|---------|---------|---------|---------|---------------|---------------------------------------------|---------|---------|---------|---------|
| P/MPa                                            | 313.6 K | 334.0 K | 373.6 K | 414.2 K | <i>P</i> /MPa | 295.0 K                                     | 313.6 K | 334.0 K | 373.6 K | 414.2 K |
| 10                                               | 581.4   |         |         |         |               |                                             |         |         |         |         |
| 25                                               | 601.5   | 585.0   | 551.0   | 517.5   | 25            |                                             | 566.0   | 547.4   | 511.4   | 472.0   |
| 40                                               | 617.9   |         |         |         | 50            | 609.8                                       | 595.6   | 580.3   | 551.2   | 522.6   |
| 50                                               | 627.5   | 612.8   | 858.8   | 558.6   | 75            | 629.6                                       | 617.6   | 603.6   | 578.5   | 554.5   |
| 75                                               |         | 634.5   | 610.8   | 587.1   | 100           | 646.1                                       | 635.0   | 622.5   | 600.2   | 578.4   |
| 100                                              |         | 652.0   | 630.6   | 609.1   | 125           | 660.1                                       | 649.6   | 638.1   | 617.6   | 597.3   |
| 125                                              |         |         | 646.6   | 627.1   | 150           | 672.4                                       | 662.5   | 651.6   | 632.3   | 613.3   |
| 150                                              |         |         | 660.5   | 641.8   | 175           | 685.2                                       | 674.2   | 663.8   | 645.4   | 627.4   |
| 175                                              |         |         |         | 655.3   | 200           | 697.3                                       | 684.4   | 674.9   | 657.2   | 640.1   |
| 200                                              |         |         |         | 667.3   |               |                                             |         |         |         |         |

Table 8. Fit Parameters and Indices for Eqs 2 and 3 in the Composition Range  $0.176 \le x_1 \le 1$  for Octamethylcyclotetrasiloxane (1) + Methane (2) Mixtures

|                                  | i = 0                 | i = 1                 | i = 2            | i = 3                                | i = 4                                          | i = 5                   | i = 6           | <i>i</i> = 7          | <i>i</i> = 8 |
|----------------------------------|-----------------------|-----------------------|------------------|--------------------------------------|------------------------------------------------|-------------------------|-----------------|-----------------------|--------------|
| a <sub>i</sub><br>b <sub>i</sub> | $0.42287 \\ -25.5999$ | $-1.71779 \\ -186.96$ | 3.7384<br>107.76 | $\xi = 4,  \xi = -3.64405$<br>17.617 | 8 $\nu = 3, \vartheta = 7$<br>1.3073<br>0.4693 | 7<br>-0.07296<br>79.891 | 0.2719<br>14.38 | $-0.34833 \\ -49.106$ | 0.14976      |
| Ki                               | 794.432               | 1392.57               | -1635.04         | $P_0 = 50 \text{ MF}$<br>682.38      | Pa, $\alpha = 3, \beta = -1.1237$              | 7<br>0.8207             | -0.7427         | 0.2559                |              |



**Figure 6.** Experimental excess molar volumes  $V_{\rm m}^{\rm E}$  at 414.2 K plotted against the mole fraction *x* for *x* DMP + (1 - x) CH<sub>4</sub>: (**II**) 25 MPa, (**O**) 50 MPa, (**A**) 125 MPa, (**V**) 200 MPa.



**Figure 7.** Experimental excess molar volumes  $V_{\rm m}^{\rm E}$  at 413.2 K plotted against the mole fraction *x* for *x* OMCTS + (1 - *x*) CH<sub>4</sub>: (**■**) 30 MPa, (**●**) 50 MPa, (**▲**) 100 MPa, (**▼**) 140 MPa.

Table 9. Standard deviation  $\sigma$  forOctamethylcyclotetrasiloxane (1) + Methane (2) Mixtures

| <i>X</i> <sub>1</sub>                                          | 0.177 | 0.374 | 0.531 | 0.772 | 1.0 |
|----------------------------------------------------------------|-------|-------|-------|-------|-----|
| $\sigma[\rho_0(50 \text{ MPa})]/(\text{kg}\cdot\text{m}^{-3})$ | 1.2   | 2.0   | 2.5   | 1.4   | 0.4 |
| $\sigma(\rho)/(\text{kg}\cdot\text{m}^{-3})$                   | 3.7   | 2.5   | 5.6   | 2.2   | 2.0 |

$$\frac{\rho_0(P_0)}{\rho} = 1 - A \ln \left[\frac{B+P}{B+P_0}\right]$$
(1)

$$A = \sum_{i=0}^{\zeta} a_{i} x^{i} + \frac{10^{3} K}{T (\text{K})} \sum_{i=\zeta+1}^{\zeta} a_{i} x^{i-(\zeta+1)}$$

$$B = \sum_{i=0}^{\nu} b_{i} x^{i} + \frac{10^{3} K}{T (\text{K})} \sum_{i=\nu+1}^{\vartheta} b_{i} x^{i-(\nu+1)}$$
(2)

tions, the reference densities  $\rho_0(P_0)$  were fitted with the polynomial given in eq 3.*x* is the mole fraction of the heavier component of the two binary mixtures. In Table 8 the parameters for eqs 2 and 3 for the system OMCTS (1) + CH<sub>4</sub> (2) are compiled. These equations describe the experimental densities in the mole fraction range 0.176  $\leq$ 

Table 11. Standard Deviation  $\sigma$  for 2,2-Dimethylpropane (1) + Methane (2) Mixtures

| <u>X1</u>                                                        | 0   | 0.243 | 0.485 | 0.794 | 1.0 |
|------------------------------------------------------------------|-----|-------|-------|-------|-----|
| $\sigma[ ho_0(100 \text{ MPa})]/(\text{kg} \cdot \text{m}^{-3})$ | 2.7 | 1.0   | 1.1   | 1.4   | 1.9 |
| $\sigma[\rho]/(\text{kg}\cdot\text{m}^{-3})$                     | 6.4 | 3.0   | 1.7   | 1.4   | 4.5 |

|                   |               |             | ρ/(kg         | -m <sup>-3</sup> ) |             |                              |
|-------------------|---------------|-------------|---------------|--------------------|-------------|------------------------------|
| neat<br>component | <i>P</i> /MPa | <i>T</i> /K | this<br>paper | lit.               | deviation/% | ref                          |
| DMP               | 40            | 450         | 517           | 523 <sup>a</sup>   | +1.1        | Das et al.<br>(1977)         |
| DMP               | 25            | 450         | 487           | 489 <sup>a</sup>   | +0.4        | Das et al.<br>(1977)         |
| DMP               | 20.6          | 310.9       | 598           | 604                | +1.0        | Gonzalez and<br>Lee (1968)   |
| OMCTS             | 40            | 323.2       | 968           | 968.7              | +0.06       | Easteal and<br>Woolf (1984)  |
| OMCTS             | 20            | 323.2       | 947           | 947.6              | +0.06       | Easteal and<br>Woolf (1984)  |
| OMCTS<br>OMCTS    | SVP<br>SVP    | 337.7       | 906<br>036    | 905<br>038         | -0.1        | Marsh (1968)<br>Marsh (1968) |
| 01015             | 571           | 500.2       | 550           | 556                | 0.2         | mar 511 (1500)               |

<sup>a</sup> Data from the compressibility factor.

$$\rho_0(P_0) = \sum_{i=0}^{\alpha} \kappa_i x^i + [T(\mathbf{K})] \sum_{i=\alpha+1}^{\beta} \kappa_i x^{i-(\alpha+1)}$$
(3)

 $x_1 \leq 1$  under inclusion of the published data for neat OMCTS (Easteal and Woolf, 1984). At the methane rich side of the mixtures the influence of the composition upon the density is very strong, and it proved impossible to devise a set of equations valid over the whole range of composition with sufficient accuracy. Table 9 shows the standard deviation  $\sigma$  for the reference points and the complete experimental isotherms defined by

$$\sigma = \left[\frac{1}{n_{i=1}}^{n} [\rho_i - \rho(P, T, x)]^2\right]^{1/2}$$
(4)

The corresponding data for DMP  $(1) + CH_4$  (2) are compiled in the Tables 10 and 11. For this system it proved possible to fit the experimental densities over the whole mole fraction range  $0 \le x_1 \le 1.0$  under inclusion of the published data for neat methane (Setzmann and Wagner, 1991) and DMP (Das et al., 1977; Gonzalez and Lee, 1968). Representative examples for the quality of the fits and the experimental densities are compiled in Figures 1–5. Our data for neat OMCTS and DMP agree well with literature data and do not show systematic deviations (see Table 12). When extrapolated to vapor pressure, our results for OMCTS are in agreement with the values given by Marsh (1968).

Excess molar volumes were computed from the experimental densities and composition using the relation

$$V_{\rm m}^{\rm E} = \frac{[x_1M_1 + (1 - x_1)M_2]}{\rho} - \frac{x_1M_1}{\rho_1} - \frac{(1 - x_1)M_2}{\rho_2} \quad (5)$$

where  $x_1$  is the mole fraction of the first component in the mixture,  $M_1$  and  $M_2$  represent molecular masses,  $\rho$ ,  $\rho_1$ , and

Table 10. Fit Parameters and Indices for Eqs 2 and 3 in the Composition Range  $0 \le x_1 \le 1.0$  for 2,2-Dimethylpropane (1) + Methane (2) Mixtures

|                                                  | <i>i</i> = 0          | <i>i</i> = 1           | <i>i</i> = 2                      | <i>i</i> = 3                                              | <i>i</i> = 4     | <i>i</i> = 5 | <i>i</i> = 6 |
|--------------------------------------------------|-----------------------|------------------------|-----------------------------------|-----------------------------------------------------------|------------------|--------------|--------------|
| $a_i \\ b_{ m i}$                                | $0.48196 \\ -25.6212$ | $-0.89692 \\ -108.508$ | $\zeta = 3,$<br>0.8498<br>36.5576 | $\xi = 6; \nu = 2, \vartheta = 4$<br>-0.262897<br>0.51631 | -0.08509441.3774 | 0.165944     | -0.101553    |
| $P_0 = 100 \text{ MPa},  \alpha = 3,  \beta = 4$ |                       |                        |                                   |                                                           |                  |              |              |
| Ki                                               | 522.115               | 751.4                  | -663.73                           | 243.707                                                   | -0.596           |              |              |

 $\rho_2$  are the respective densities of the mixture and pure components 1 and 2. Figure 6 shows the experimental excess volumes as a function of the mole fraction of DMP for the DMP + CH<sub>4</sub> mixtures at 414.2 K. The temperature dependence of  $V_m^E$  is weak for this system, the data analysis being limited by the steep melting pressure curve of the neat DMP. Figure 7 gives  $V_m^E$  in the OMCTS + CH<sub>4</sub> system at 413.2 K. The pressure dependence is similar in both systems. The OMCTS system shows the larger negative excess volumes, indicating that in these mixtures attractive interactions are more pronounced.

#### Acknowledgment

We thank Mr. Knott, Mr. Niesner, and Mrs. Löw for their expert technical help.

### **Literature Cited**

 Chandler, D. Rough hard sphere theory of the self-diffusion constant for molecular liquids. J. Chem. Phys. 1975, 62, 1358–1363.
 Das, T. R.; Reed, C. O.; Eubank, P. T. PVT Surface and Thermodynamic

 Properties of Neopentane. J. Chem. Eng. Data 1977, 22, 16–21.
 Easteal, J. A.; Woolf, L. A. Self-diffusion and Volumetric Measurements for Octamethylcyclotetrasiloxane under Pressure at 323 K. J. Chem. Soc., Faraday Trans. 1 1984, 80, 549–551.

- Francesconi, A.; Lentz, H.; Franck, E. U. Die PVT-Daten des Acetonitrils bis 450 C und 2500 bar. Ber. Bunsen-Ges. Phys. Chem. 1975, 79, 897–901.
- Gonzalez, M. H.; Lee, A. L. Viscosity of 2,2-Dimethylpropane J. Chem. Eng. Data **1968**, *13*, 66–69.
- Goodwin, R. J. Phys. Chem. Ref. Data 1987, 16, 799.
- Has, M.; Lüdemann, H.-D. Self Diffusion in Compressed Tetrafluoromethane. J. Mol. Liq. 1990, 46, 7–16.
- Marsh, K. N. Thermodynamics of Octamethylcyclotetrasiloxane Mixtures. Trans. Faraday Soc. 1968, 64, 883–893.
- Setzmann, U.; Wagner, W. A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 1991, 20, 1061–1155.
- Speedy, R. J.; Prielmeier, F. X.; Vardag, T.; Lang, E. W.; Lüdemann, H.-D. Diffusion in Simple Fluids. *Mol. Phys.* **1989**, *66*, 577–590. Wappmann, S. Ph.D. Dissertation, Universität Regensburg, 1993.
- Wappmann, S.; Karger, N.; Lüdemann, H.-D. pVT Data of Liquid 1-, 2-, and 3-Pentanol from 10 to 200 MPa and from 233 to 433 K. J. Chem. Eng. Data 1995, 40, 233–236.

Received for review July 3, 1995. Accepted October 17, 1995. $^{\otimes}$  Financial support by the Fonds der Chemie is gratefully acknowledged.

#### JE950158C

<sup>®</sup> Abstract published in Advance ACS Abstracts, December 1, 1995.